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ABSTRACT 

 
Development of practical and verifiable prognostic 

approaches for gas turbine engine bearings will play a critical 
role in improving the reliability and availability of legacy and 
new acquisition aircraft engines.  In addition, upgrading current 
United States Air Force (USAF) engine overhaul metrics based 
strictly on engine flight hours (EFH) and total accumulated 
cycles (TAC) with higher fidelity prognostic models will 
provide an opportunity to prevent failures in engines that 
operate under unusually harsh conditions, and will help avoid 
unnecessary maintenance on engines that operate under 
unusually mild conditions.   

 
A comprehensive engine bearing prognostic approach is 

presented in this paper that utilizes available sensor information 
on-board the aircraft such as rotor speed, vibration, lube system 
information and aircraft maneuvers to calculate remaining 
useful life for the engine bearings.  Linking this sensed data 
with fatigue-based damage accumulation models based on a 
stochastic version of the Yu-Harris bearing life equations with 
projected engine operation conditions is implemented to 
provide the remaining useful life assessment.  The combination 
of health monitoring data and model-based techniques provides 
a unique and knowledge rich capability that can be utilized 
throughout the bearing’s entire life, using model-based 
estimates when no diagnostic indicators are present and using 
the monitored features such as oil debris and vibration at later 
stages when failure indications are detectable, thus reducing the 
uncertainty in model-based predictions.  A description and 
initial implementation of this bearing prognostic approach is 
illustrated herein, using bearing test stand run-to-failure data 
and engine test cell data.  

 
INTRODUCTION 
 

A comprehensive prognostic capability can be achieved for 
rolling element bearings through the integration of health state 
awareness with model-based damage assessments.   The basis 
for this prediction is an intelligent fusion of diagnostic features 

and physics-based modeling.  Since bearings have many failure 
modes and there are many influencing factors, a modular 
approach is taken in the design.  

 
As stated above there are many potential failure modes for 

rolling element bearings and to completely discuss all modes is 
beyond the scope of this paper.  Therefore only the normal 
rolling contact fatigue failure mode, herein called spalling, is 
discussed.  Also other failure modes may cause conditions that 
result in spalling (3).  For instance Brinnell marks can cause 
localized stress concentrations that prematurely cause spalling.   
 

Some failure modes are not applicable to the prognostic 
architecture.  Maintenance induced failures (misalignment, 
incorrect installation, etc.) are impossible to predict.   
Contamination of the lubricant is one of the most common 
failure modes, but it is impossible to predict when the lubricant 
will become contaminated.  However, it is possible to detect the 
conditions, through sensor information, that precede these 
failures and adjust the prediction accordingly, such as detection 
of water in the lubricant would reduce the fatigue life 
prediction. 

 
Assessment of remaining life entails three functional steps 

as shown in Figure 1: Sensed Data, Current Bearing Health, 
and Future Bearing Health.  The RUL prediction process begins 
with the Sensed Data module.  Signals indicative of bearing 
health (vibration, oil debris, temperature, etc) are monitored to 
determine the current bearing condition.  Diagnostic features 
extracted from these signals are then passed on to Current 
Bearing Health module.  These diagnostic features are low-
level signal extraction type features, such as root mean square 
(RMS), kurtosis, and high frequency enveloped features.  In 
addition engine speed and maneuver induced loading are 
outputted for use as inputs to bearing health models.   Also 
extracted are characteristic features that can be used to identify 
failure of a particular bearing component (ball, cage, inner or 
outer raceway).   
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Figure 1 Overall Prognostic Architecture 
 
Central to the next step is a rolling contact fatigue (RCF) 

model.  This model utilizes information from the Sensed Data 
module to calculate the cumulative damage sustained by the 
bearing since it was first installed.  Life limiting parameters 
used by the RCF model such as load, and lubricant film 
thickness are derived from the sensed data using physics-based 
and empirical models. Utilizing knowledge fusion this 
probability is combined with the extracted features that are 
indicative of spalling.  Combining the model output with the 
features improves the robustness and accuracy of the 
prediction.     

 
Whether or not a spall exists determines the next step.  If a 

spall does not currently exist the spall initiation prognostic 
module is used to forecast the time to spall initiation.  This 
forecast is based on the same model that is used to assess the 
current probability of spall initiation, but instead the model uses 
projected future operating conditions (loads, speeds, etc.) rather 
than the current conditions. Then the initiation results are 
passed to the progression model, which also uses the mission 
profile to allow an accurate prediction on the time from spall 
initiation to failure.  If a spall currently exists the initiation 
prognostic module is bypassed and the process described above 
is performed directly. 

 
VIBRATION BASED FEATURES 

 
Development of the vibration features is a critical step in 

the design of the integrated system mentioned above.  To this 
end, a series of tests was conducted to provide data for 
algorithm testing.  Vibration and oil debris data acquired from a 
ball bearing test rig in with a damaged bearing was installed is 
used to compare the effectiveness of various diagnostic 
features. Vibration data acquired from a gas turbine engine 
running in a test cell provides more realistic data that includes 
multiple excitation sources and background noise. 
Distinguishing bearing signatures from the background noise of 
an operating engine presents a significant technical challenge. 
To test the ability of vibration analysis algorithms to observe 
weak bearing signatures, the bearings in the engine did not 
contain any known faults.  

 
For the faulted bearing tests, data was collected from a 

miniaturized lubrication system simulator, called the 
Minisimulator, located at the Air Force Research Laboratory 
(ARFL) on Wright Patterson Air Force Base (3). This data was 
collected with much support from the University of Dayton 
Research Institute (UDRI) and the AFRL. The Minisimulator 
consists of a test head as shown in Figure 2 and a lubrication 
sump. A pair of angular contact bearings located in the test 
head support a rotating shaft. The bearings are identical to the 
number 2 main shaft bearing of an Allison T63 gas turbine 
engine.  

 

 
Figure 2-Minisimulator Setup 

 
Although designed primarily for lubrication tests, the 

Minisimulator was used to generate accelerated bearing 
failures.  One run-to-failure seeded fault test was run.  To 
accelerate the bearing failure, a fault was seeded into the inner 
raceway of one of the bearings by means of a small hardness 
indentation (Brinnell mark). The bearing was then loaded to 
approximately 14,234 N (3200 lbf) and ran at a constant speed 
of 12000 RPM (200 Hz). Vibration data was collected from a 
cyanoacrylate–mounted (common called Super Glue) 
accelerometer, which was sampled at over 200 kHz.  Also, the 
quantity of debris in the oil draining from the test head was 
measured using a magnetic chip collector (manufactured by 
Eateon Tedeco).   The oil data was used in determining the 
initiation of the spall. 

 
For the engine tests, data was collected from a T63 engine 

located in a test cell, also at AFRL.  The T63 tests were 
performed at two gas generator speed levels, a “cruise speed” 
of 50,000 RPM (833 Hz) and an “idle speed” of 32,000 RPM 
(533 Hz).  Dimensions of the bearings of interest are given in 
Table 1. 

 
Table 1-Bearing Dimensions (mm) 

Bearing Ball 
Diameter 

(Bd) 

Number 
of balls 

(z) 

Pitch 
Diameter 

(Pd) 

Contact Angle 
 (β) 

# 1 4.7625   8 42.0624 18.5˚ 
# 2 7.9375 13 42.0624 18.5˚ 
 
FAULT FREQUENCIES 

 
The fundamental pass frequencies of the components of a 

bearing can be easily calculated with equations from reference 

Magnetic oil plug 

Test head, bearing 

 

Accelerometer 
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(4).  Extraction of the vibration amplitude at these frequencies 
from a fast Fourier Transform (FFT) often enables isolation of 
the fault to a specific bearing in an engine. High amplitude of 
vibration at any of these frequencies indicates a fault in the 
associated component.   

 
Table 2 is the calculated minisimulator bearing fault 

frequencies.  Table 3 and Table 4 summarize the two bearings 
of interest for the T63 engine. 

 
Table 2-Minisimulator Bearing Fault Frequencies (Hz)  

Shaft Speed  BSF BPFI BPFO Cage 
200 512 1530 1065 82 

 
Table 3-T63 #1 Bearing Fault Frequencies (Hz) 

Shaft Speed  BSF BPFI BPFO Cage 
533 2327 2361 1931 238 
833 3636 3690 2974 372 

   
Table 4-T63 #2 Bearing Fault Frequencies (Hz) 

Shaft Speed  BSF BPFI BPFO Cage 
533 1367 4085 2845 219 
833 2136 6384 4456 342 

 
Note the listings are defined by: 
 
 BSF: Ball Spin Frequency 
 BPFI: Inner Raceway Frequency 
 BPFO: Outer Raceway Frequency 
 Cage: Cage Frequency 
 
Periodic forces associated with meshing of gear teeth also 

excite vibration at specific frequencies. These gear mesh 
frequencies (GMF) are calculated for several of the gears in the 
T-63 engine ands summarized in Table 5.  The calculated 
GMFs for the T-63 gas producer and power turbine gear trains 
are for an idle speed of 32,000 RPM.  The speed ratio (the ratio 
of the gear speed to the gas producer (GP) input gear speed) 
may be used to calculate the gear mesh frequencies at other gas 
producer speeds.   

 
Table 5-T-63 Gear Mesh Frequencies (Hz) 

 Gear Speed Ratio 
(to GP shaft speed) 

GMF @ 533 
Hz 

A 1 .000 9061 
B 0.202 3775 
C 0.202 9061 
D 0.08 3775 
E 0.151 3777 
F 0.236 3775 
G 0.252 1125 
H 0.073 1124 
I 0.117 3128 
J 0.117 2315 
K 0.099 2315 
L 0.082 2315 
M 0.196 8758 

 
 

HIGH FREQUENCY ENVELOPING  
Although bearing characteristic frequencies are easily 

calculated, they are not always easily detected by conventional 
frequency domain analysis techniques.  Vibration amplitudes at 
these frequencies due to incipient faults (and sometimes more 
developed faults) are often indistinguishable from background 
noise or obscured by much higher amplitude vibration from 
other sources including engine rotors, blade passing, and gear 
mesh in a running engine. However, bearing faults produce 
impulsive forces that excite vibration at frequencies well above 
the background noise in an engine.   

 
Impact Energy™ is an enveloping-based vibration feature 

extraction technique (5). The enveloping process consists of 
first band pass filtering of the raw vibration signal.  Second, the 
band pass filtered signal is full waved rectified to extract the 
envelope.  Third, the rectified signal is passed through a low 
pass filter to remove the high frequency carrier signal. Finally, 
the signal has any DC content removed. 

 
The Impact Energy™ was applied to the seeded fault test 

data collected using the Minisimulator. To provide the clearest 
identification of the fault frequencies, several band pass and 
low pass filters were used of analyze various regions of the 
vibration spectrum.  Using multiple filters allowed 
investigation of many possible resonance's of the bearing test 
rig and its components.  A sample Impact Energy™ spectrum 
from early in the Minisimulator test is shown in Figure 3. Note 
that this data was collected prior to spall initiation (based on oil 
debris data), and the feature response is due the indentation on 
the race. 

 
For comparison, a conventional FFT (10 frequency domain 

averages) of vibration data was also calculated and is shown in 
Figure 4. In the conventional frequency domain plot (Figure 4) 
there is no peak at the inner race ball pass frequency (1530 Hz). 
However, the Impact Energy™ plot (Figure 3) shows clearly 
defined peaks at this frequency and the second through forth 
harmonics of the inner race ball pass frequency.   These peaks 
were defined using a detection window of ± 5 Hz about the 
theoretical frequency of interest to account for bearing slippage. 
From the onset of the test there is an indication of a fault.   
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Figure 3-Impact Energy™ FFT of Minisimulator-Seeded 
Fault 

 

 
Figure 4-Conventional FFT of Minisimulator-Seeded 

Fault   
 
Previous minisimulator tests were conducted on un-faulted 

"healthy" bearings.  Although these were run-to-failure tests 
there was no seeding of a fault.  Below are two plots for 
comparison with the seeded fault test.  Figure 5 shows the 
Impact Energy™ derived FFT from the minisimulator test with 
the un-faulted bearing.  Notice the much lower magnitude for 
this plot and Figure 6, which is the conventional FFT.  
Although the high magnitude of at the BPFI in Figure 5 appears 
to indicate a fault it merely is an indication of possible bearing 
flaws. 

 
Figure 5-Impact Energy™ FFT of Minisimulator-No 

Fault  
 

 
Figure 6-Conventional FFT of Minisimulator-No 

Fault 
 
 
Data from the T63 engine (running at the idle shaft speed 

of 32,000 RPM) was also analyzed using both conventional 
frequency domain analysis and Impact Energy™. This data 
presents a greater challenge to the analysis techniques for two 
reasons: First, the bearings in the engine do not contain any 
known faults. Second, the bearing signatures may be obscured 
by much higher amplitude vibration from random noise and 
other sources of vibration energy including blade passing, and 
gear mesh in the engine. 

 
Identification of vibration features in a running engine is 

very difficult due to the high ambient noise level, which often 
obscures diagnostic features.  Despite the fact that the bearings 
and gears in the engine are healthy, minor imperfections within 
manufacturing tolerances cause slightly elevated vibration 
levels at the characteristic frequencies.  Raceway and ball 
waviness, surface finish imperfections and dimensional 
tolerances can lead to vibration signatures in a healthy engine 
(4).  Vibration analysis techniques that are able to distinguish 
these signatures from a healthy bearing in running engine are 
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considered the most likely to detect the signature of a defective 
bearing, because they are more sensitive than other techniques.   

 
Figure 7 shows a conventional frequency domain analysis 

of the T63 engine data with the locations of the bearing 
characteristic frequencies identified. However, the vibration 
amplitudes at these frequencies cannot be distinguished from 
the noise floor.  

 
Figure 7-T63 Conventional FFT 

 
The most prominent features in the Impact Energy™ 

spectrum in Figure 8 are harmonics of the gas generator shaft 
speed (NxRPM). Although less prominent, a gear mesh 
frequency (GMF) and the outer race characteristic frequency of 
the number 2 bearing (BPFO 2) are also observable. Low 
amplitude vibration at a gear mesh frequency does not 
necessarily indicate that a problem exists. The low amplitude 
vibration at a characteristic bearing frequency may be 
attributable to a benign bearing condition as well. However, 
observation of these features illustrates the ability of Impact 
Energy to detect incipient faults.   

 
Although most of the peaks have been identified several 

still are unidentified.  In a turbine engine there are many gears 
and even more bearings, which have distinct frequencies.  In 
addition there are frequencies associated with the compressor 
and turbine blades. 

 
Figure 8-T63 Impact Energy™ FFT, Showing Frequencies 

at Calculated Frequencies but Found Magnitudes 
 

In addition to the above features conventional vibration 
features are used.  Although traditional statistical based such as 
RMS, kurtosis, crest value, and peak value are valuable to the 
prognostics they are not represented (9).   These other features 
are used in combination with Impact Energy™, to avoid false 
alarms. 

 
FUSION OF MODEL AND SENSOR-BASED 
INFORMATION 

 
Model and sensor-based diagnostic approaches offer 

complementary condition assessment information that can be 
fused to achieve a comprehensive diagnostic/prognostic 
capability throughout a components life. Model-based 
approaches provide valuable damage accumulation information 
on critical components well in advance of failure indications. 
Due to modeling uncertainties, these long-range predictions 
typically have broad confidence bounds. Sensor-based 
approaches provide direct measures of component condition 
that can be used to update the modeling assumptions and 
reduce the uncertainty in the RUL predictions.  

 
To achieve a comprehensive diagnostic/prognostic 

capability throughout the life of critical engine components, 
model-based information is used to predict the initiation of a 
fault. In most cases, these predictions will prompt “just in time” 
maintenance actions to prevent the fault form developing. 
However, due modeling uncertainties, incipient faults may 
occasionally develop earlier than predicted. In these situations, 
sensor-based diagnostics complement the model-based 
prediction by updating the model to reflect the fact that fault 
initiation has occurred. Subsequent predictions of the remaining 
useful component life will be based on fault progression rather 
than initiation models.   

 
Spall Initiation Model 

A variety of theories exist for predicting spall initiation 
from bearing dimensions, loads, lubricant quality, and a few 
empirical constants. Many modern theories are based on the 
Lundberg-Palmgren (L-P) model that was developed in the 

BPFO 2 

NxRPM 

GMF 
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1940’s (1). A model proposed by Ioannides and Harris (I-H) 
improved on the L-P model by accounting for the evidence of 
fatigue limits for bearings (6). Yu and Harris (Y-H) proposed a 
stress-based theory in which relatively simple equations are 
used to determine the fatigue life purely from the induced stress 
(7). This approach depends to lesser extent on empirical 
constants, and the remaining constants may be obtained from 
elemental testing rather than complete bearing testing as 
required by L-P.  

   
The fundamental equation of the Y-H model stated in 

equation 1 relates the survival rate (S) of the bearing to a stress 
weighted volume integral as shown below. The model utilizes a 
new material property for the stress exponent (c) to represent 
the material fatigue strength, and the conventional Weibull 
slope parameter to account for dispersion in the number of 
cycles (N). The fatigue initiating stress (τ) may be expressed 
using Sines multi-axial fatigue criterion for combined 
alternating and mean stresses, or as a simple Hertz stress (8). 

 
                   Error! Objects cannot be created from 

editing field codes.  (1)   
      

For simple Hertz stress, a power law is used to express the 
stress-weighted volume. In equation 2 below, λ is the 
circumference of the contact surface, and a and b are the major 
and minor axes of the contact surface ellipse. The exponent 
values were determined by Yu and Harris for b/a ≈0.1 to be 
x=0.65, y=0.65, and z=10.61. Yu and Harris assume that these 
values are independent of the bearing material. 

 
      Error! Objects cannot be created from editing field 

codes.   (2)    
      

According to the Y-H model, the life (L10) of a bearing is a 
function of the basic dynamic capacity (Qc) and the applied 
load as stated below in equation 3.   Where, the basic dynamic 
capacity is given in equation 4.  A lubrication effect factor may 
be introduced to account for variations in film thickness due to 
temperature, viscosity, and pressure.  Although this approach 
was developed for angular contact ball bearings, it is 
extendable to other bearing types such as tapered roller and 
cylindrical bearings. 

 
Error! Objects cannot be created from editing field 

codes.                            (3)   
         

 
Error! Objects cannot be created from editing field 

codes.              (4) 
 
Error! Objects cannot be created from editing field 

codes.       (5) 
 
Where: 
 
A1 = Material property 
T = A function of the contact surface dimensions 
T1= value of T when a/b = 1 
u = number of stress cycles per revolution 
D = Ball diameter 

ρ = Curvature (inverse radii of component) 
d = Component (race way) diameter 
a*= Function of contact ellipse dimensions 
b*= Function of contact ellipse dimensions 
 
 

MODEL VALIDATION 
 

Validation of the spall initiation model requires a 
comparison of actual fatigue life values to predicted model 
values.  Acquiring sufficient numbers of actual values is not a 
trivial task.  Under normal conditions it is not uncommon for a 
bearing life value to extend past 100 million cycles, prohibiting 
normal run-to-failure testing.   

 
Accelerated life testing is one method used to rapidly 

generate many bearing failures.  By subjecting a bearing to high 
speed, load, and/or temperature, rapid failure can be induced.  
There are many test apparatus used for accelerated life testing 
including ball and rod type test rigs.  One such test rig is 
operated by UES, Inc at the Air Force Research Laboratory 
(AFRL) at Wright Patterson Air Force Base in Dayton, OH.  A 
simple schematic of the device is shown in Figure 9 with 
dimensions given in millimeters.  This rig consists of three 12.7 
mm diameter balls contacting a 9.5 mm rotating central rod see 
Table 6 for dimensions.  The three radially loaded balls are 
pressed against the central rotating rod by two tapered bearing 
races that are thrust loaded by three compressive springs. A 
photo of the test rig is shown in Figure 10.  Notice the 
accelerometers mounted on the top of the unit. The larger 
accelerometer is used to automatically shutdown the test when 
a threshold vibration level is reached, the other measures 
vibration data for analysis.     

 

 

Dr 

Db 

Dm 
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Figure 9 Schematic of Rolling Contact Fatigue Tester  
 
 

Table 6- Rolling Contact Fatigue Tester Dimensions (mm) 
Rod diameter (Dr) 9.52 
Ball diameter (Db) 12.70 
Pitch diameter (Dm) 22.23 

 

 
Figure 10-Rolling Contact Fatigue Tester  

 
By design the rod is subjected to high contact stresses.  

Due to the geometry of the test device, the 222 N (50 lbs) load 
applied by the springs translates to a 942 N (211 lbs) load per 
ball on the center rod.  Assuming Hertzian contact for balls and 
rod made of M50 bearing steel, the 942 N radial load results in 
a maximum stress of approximately 4.8 GPa (696 ksi).   This 
extremely high stress causes rapid fatigue of the bearing 
components and can initiate a spall in less than 100 hours, 
depending on test conditions including lubrication, temperature, 
etc. Since failures occur relatively quickly, it is possible to 
generate statistically significant numbers of events in a timely 
manner.   

 
For validation purposes M50 rods and balls were tested at 

room temperature (23°C).  The results of these tests are in 
Table 7.   A summary plot is shown in Figure 11. 

 
Table 7 RCF Fatigue Life Results 

Failures (#) Susp (#) Susp Time 
(cylces) 

29 1 (ball failed) 83.33 
 

 

Figure 11 RCF Fatigue Life Results 

 
Stochastic Model 

As stated above one of the issues with empirical/physics 
based models is their inherent uncertainty.  Assumptions and 
simplifications are made in all modeling and not all of the 
model variables are exactly known. Often stochastic techniques 
are used to account for the implicit uncertainty in a model’s 
results.  Statistical methods are used to generate numerous 
possible values for each input.   

 
 A Monte Carlo simulation was utilized in the calculation 

of the bearing life distribution.  Inputs to the model were 
represented by normal or lognormal distributions to 
approximate the uncertainty of the input values.  Sample input 
distributions to the model are shown in Figure 12.   

 

 
Figure 12-Model Input Distributions 

Loading springs Band heaters 

Accelerometer, 
 triggers shutdown 

Oil drip 
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Comparison 

The Yu-Harris model was used to simulate the room 
temperature M50 RCF tests.  Figure 13 shows the results for a 
series of the room temperature RCF tests on the M50 bearing 
material.  This test was run at 3600 RPM at room temperature 
with the 7808K lubricant.   The y-axis is the number of central 
rod failures and the x-axis is the millions of cycles to failure. 

 
The predicted life from the model is shown in Figure 13 

also, superimposed on the actual test results. This predicted 
distribution shown in red was calculated from the model using 
one million Monte Carlo points.  

 

 
Figure 13-Room Temp Results vs. Predicted 
 
In Figure 14, the median ranks of the actual lives (blue 

dots) are plotted against the cumulative distribution function 
(CDF) of the predicted lives (blue line).  The model predicted 
lives are slightly more conservative (in the sense that the 
predicted life is shorter than the observed life) once the 
cumulative probability of failure exceeds 70%.  However since 
bearings are a critical component, the main interest is in the left 
most region of the distribution where the first failures occur and 

the model correlates better. 
Figure 14-Actual Life vs. Predicted Life 
 

Calculation of median ranks is a standard statistical 
procedure for plotting failure data.  During run-to-failure 
testing there are often tests that either are prematurely stopped 
before failure or a failure occurs of a component other than the 
test specimen.  Although the data generated during these 
failures are the mode of interest, they provide a lower bound on 
the fatigue lives due to the failure mode of interest.  One 
method for including this data is by median ranking.   

 
The median rank was determined using Benard's Median 

Ranking method, which is stated in equation 6 below. This 
method accounts for tests that did not end in the failure mode of 
interest (suspensions). In the case of the ball and rod RCF test 
rig, the failure mode of interest is creation of a spall on the 
inner rod. The time to suspension provides a lower bound for 
the life of the test article (under the failure mode of interest), 
which can be used in reliability calculations. During the testing 
on the RCF test rig, significant portions of the tests were 
terminated without failure after reaching ten times the L10 life. 
There were also several tests that ended due to development of 
a spall on one of the balls rather than on the central rod. 
 

( )
( )4.0N

3.0AR Rank Median  sBenard'
+
−

=        (6) 

 
Where: 

Failures and sSuspension ofNumber   N
Rank Adjusted  AR

=
=

 
The adjusted rank is calculated below. 
 

( ) ( ) ( )
1Rank Reverse

1NRank Adjusted PreviousRank ReverseAR
+

++
=

x

(7) 
 

Although the test does not simulate an actual bearing 
assembly in an engine, it does simulate similar conditions (1).  
Materials and the geometry of the bearing and the lubricants are 
the same for the test rig as they are in the T-63 engine.  The test 
rig results validate the model's ability to predict the fatigue life 
of the material under similar conditions to an operating engine. 

 
CONCLUSION 

 
 To achieve a comprehensive diagnostic/prognostic 

capability throughout the life of critical engine components, 
model-based information is used to predict the initiation of a 
fault. In most cases, these predictions will prompt “just in time” 
maintenance actions to prevent the fault form developing. 
However, due modeling uncertainties, incipient faults may 
occasionally develop earlier than predicted. In these situations, 
sensor-based diagnostics complement the model-based 
prediction by updating the model to reflect the fact that fault 
initiation has occurred. Sensor-based approaches provide direct 
measures of component condition that can be used to update the 
modeling assumptions and reduce the uncertainty in the RUL 
predictions. Subsequent predictions of the remaining useful 
component life will be based on fault progression rather than 
initiation models.   
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 Real-time algorithms for predicting and detecting bearing 

and gear failures are currently being developed in parallel with 
emerging flight-capable sensor technologies including in-line 
oil debris/condition monitors, and vibration analysis MEMS. 
These advanced prognostic/diagnostic algorithms utilize 
intelligent data fusion architectures to optimally combine 
sensor data, with probabilistic component models to achieve the 
best decisions on the overall health of oil-wetted components. 
By utilizing a combination of health monitoring data and 
model-based techniques, a comprehensive component 
prognostic capability can be achieved throughout a components 
life, using model-based estimates when no diagnostic indicators 
are present and monitored features such as oil debris and 
vibration at later stages when failure indications are detectable.  
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